Functional Principal Component Analysis with Application to Viewership of Motion Pictures
نویسندگان
چکیده
Title of dissertation: FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS WITH APPLICATION TO VIEWERSHIP OF MOTION PICTURES Yue Tian, Doctor of Philosophy, 2014 Dissertation directed by: Professor Paul J. Smith Department of Mathematics University of Maryland, College Park Anderson Professor Wolfgang S. Jank Information Systems Decision Sciences Department College Of Business, University of South Florida Principal Component Analysis (PCA) is one widely used data processing technique in application, especially for dimensionality reduction. Functional Principal Component Analysis (fPCA) is a generalization of ordinary PCA, which focuses on a sample of functional observations and projects the original functional curves to a new space of orthogonal dimensions to capture the primary features of original functional curves. While, fPCA suffers from two potential error sources. One error source is originated from truncation when we approximate the functional subject’s expansion; The other stems from estimation when we estimate the principal components from the sample. We first introduce a generalized functional linear regression model and propose it in the Quasi-likelihood setting. Asymptotic inference of the proposed functional regression model is developed. We also utilize the proposed model to help marketing operational decision process by analyzing viewership of motion pictures. We start with discussing customer reviews effect on movie box office sales. We use the functional regression model with function interactions to measure the effect of Word-of-Mouth on movie box office sales. One main challenge of modeling with functional interactions is the interpretation of model estimate results. We demonstrate one method to help us get important insights from model results by plotting and controlling a re-labbeld 3-D plot. Apart from movie performance in theater, we also employ functional regression model to predict movie pre-release demand in Video-on-Demand (VOD) channel. As its growing popularity, VOD market attracts much attention in marketing research. We analyze the prediction accuracy of our proposed functional regression model with spatial components and find that our proposed model gives us the best predictive accuracy. In summary, the dissertation develops asymptotic properties of a generalized functional linear regression model, and applies the proposed model in analyzing viewership of motion picture both in theater and Video-on-Demand channels. The proposed model not only advances our understanding of motion picture demand, but also helps optimize business decision making process. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS WITH APPLICATION TO VIEWERSHIP OF MOTION PICTURES
منابع مشابه
An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملDevelopment of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method
Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....
متن کاملتقارن محلی و عمومی حین دویدن آهسته در مردان جوان ورزشکار
Purpose: Evaluation of joints behavioral symmetry of the lower limbs to produce a smooth, rhythmic movement is one of the topics in the field of biomechanics of running. This study investigated joints local and global symmetry while jogging in young male athletes. Methods: This was a quasi-experimental study. Random sampling method was used and the participants of the study included 15 health...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کامل